English Bulldog Pics English Bulldog Pics

Bulldog Female or Bulldog Male Puppy? English, French, American

the Original Pure Breed Bulldog Image

Differences between Bulldog Male and Bulldog Female, Female French Bulldog, Female American Bulldog, Bulldog Names Female


Images of White Pure Breed Bulldogs

Animals in the World English Bulldogs


I-Love-Dogs.com proudly
awards this Dog Awarddog site!
Please upload your

dog pictures,

dog videos

or visit

the dog forums!
Award Art Space 2008Award The golden Web Page Award Winner World Web Award of Excellence 2005-2006 World Web Award of Excellence 2006-2007 for

originality, overall design and appearance, ease of navigation, and content.Good Dog AwardAward Sidy Boy
English Bulldog Pictures and Bulldog Puppies Pictures

British Bulldog Photos
British Bulldog Photos
Photo Ambient English Bulldogs
Photo Ambience English Bulldogs
Images of Animals English Bulldog - Nelson the Father of Crib
Images of Animals English Bulldog

Sexual Size Dimorphism in Bulldogs Females and Bulldogs Males

The tendency for male-larger sexual size dimorphism (SSD) to scale with body size – a pattern termed Rensch's rule – has been empirically supported in many animal lineages. Nevertheless, its theoretical elucidation is a subject of debate. Here, we exploited the extreme morphological variability of domestic dog (Canis familiaris) to gain insights into evolutionary causes of this rule.

Methodology/Principal Findings

We studied SSD and its allometry among 74 breeds ranging in height from less than 19 cm in Chihuahua to about 84 cm in Irish wolfhound. In total, the dataset included 6,221 individuals. We demonstrate that most dog breeds are male-larger, and SSD in large breeds is comparable to SSD of their wolf ancestor. Among breeds, SSD becomes smaller with decreasing body size. The smallest breeds are nearly monomorphic.

Significance

SSD among dog breeds follows the pattern consistent with Rensch's rule. The variability of body size and corresponding changes in SSD among breeds of a domestic animal shaped by artificial selection can help to better understand processes leading to emergence of Rensch's rule.

Daniel Frynta, Jana Baudysova, Petra Hradcova, Katerina Faltusova, Lukas Kratochvi

Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic, 2 Department of Ecology, Faculty of Science, Charles University in Prague, Prague, Czech Republic

References

Donoghue JP. Connecting cortex to machines: recent advances in brain interfaces. Nat. Neurosci. 2002;5(Suppl):1085–88.

Nicolelis MA. Brain-machine interfaces to restore motor function and probe neural circuits. Nat. Rev. Neurosci. 2003;4(5):417–22.

Nicolelis MA, Chapin JK. Controlling robots with the mind. Sci. Am. 2002;287(4):46–53.

4. Schwartz AB. Cortical neural prosthetics. Annu. Rev. Neurosci. 2004;27:487–507.

5. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clin. Neurophysiol. 2002;113(6):767–791.

6. Leuthardt EC, Miller KJ, Schalk G, Rao RP, Ojemann JG. Electrocorticography- based brain computer interface—The Seattle experience. IEEE Trans. Neural. Syst. Rehabil. Eng. 2006;14(2):194–198.

7. Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW. A brain–computer interface using electrocorticographic signals in humans. J. Neural Eng. 2004;1(2):63–71.

8. Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, Dimitrov DF, Patil PG, Henriquez CS, Nicolelis MA. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 2003;1(2):E42.

9. Chapin JK, Moxon KA, Markowitz RS, Nicolelis MA. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat. Neurosci. 1999;2(7):664–70.

10. Taylor DM, Tillery SI, Schwartz AB. Direct cortical control of 3D neuroprosthetic devices. Science. 2002;296(5574):1829–32.

11. Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, Kim J, Biggs SJ, Srinivasan MA, Nicolelis MA. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature. 2000;408(6810):361–65.

12. Donoghue JP, Nurmikko A, Black M, Hochberg LR. Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia. J. Physiol. 2007;579(3):603.

13. Elwassif MM, Kong Q, Vazquez M, Bikson M. Bio-heat transfer model of deep brain stimulation-induced temperature changes. J. Neural Eng. 2006;3:306–15.

14. Buzsaki G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 2004;7(5):446– 51.

15. Holt GR, Koch C. Electrical interactions via the extracellular potential near cell bodies. J. Comput. Neurosci. 1999;6(2):169–84.

16. Nicolelis MA, Ghazanfar AA, Faggin BM, Votaw S, Oliveira LM. Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron. 1997;18(4):529–37.

17. Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP. Instant neural control of a movement signal. Nature. 2002;416(6877):141–42.

18. Harrison RR, Cameron C. A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid-State Circuits. 2003;38(6):958–65.

19. Neihart NM, Harrison RR. Micropower circuits for bidirectional wireless telemetry in neural recording applications. IEEE Trans. Biomed. Eng. 2005;52 (11):1950–59.

20. Olsson RH 3rd, Buhl DL, Sirota AM, Buzsaki G, Wise KD. Band-tunable multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. IEEE Trans. Biomed. Eng. 2005;52(7):1303–11.

21. Song YK, Patterson WR, Bull CW, Beals J, Hwang N, Deangelis AP, Lay C, McKay JL, Nurmikko AV, Fellows MR, Simeral JD, Donoghue JP, Connors BW. Development of a chipscale integrated microelectrode/microelectronic device for brain implantable neuroengineering applications. IEEE Trans. Neural Syst. Rehabil. Eng. 2005;13(2):220–26.

22. Perelman Y, Ginosar R. Analog front-end for multichannel neuronal recording system with spike & LFP separation. J Neurosci Methods. 2005

23. Obeid I, Morizio JC, Moxon KA, Nicolelis MAL, Wolf PD. Two multichannel integrated circuits for neural recording and signal processing. IEEE Trans. Biomed. Eng. 2003;50(2):255–58.

24. Harrison RR, Charles C. A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid-State Circuits. 2003;38(6):958–65.

25. Lewicki MS. A review of methods for spike sorting: the detection and classification of neural action potentials. Network Computation Neural Syst. 1998;9(4):53–78.

26. Harrison RR, Watkins PT, Kier RJ, Lovejoy RO, Black DJ, Greger B, Solzbacher F. A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J. Solid-State Circuits. 2007;42(1):123–33.

27. Olsson RH III, Wise KD. A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE J. Solid-State Circuits. 2005;40(12):2796–804.

28. Won DS, Wolf PD. A simulation study of information transmission by multiunit microelectrode recordings. Network Computational Neural Syst. 2004;15:29–44.

29. Rizk M, Obeid I, Callender SH, Wolf PD. A single-chip processing and telemetry engine for an implantable 96-channel neural data acquisition system. J. Neural Eng. 2007;4:309–21.

30. Won DS, Chong DY, Wolf PD. Effects of spike sorting error on information content in multi-neuron recordings. Conference Proceedings First International IEEE EMBS Conference on Neural Engineering; Washington, DC: IEEE Press; 2003. pp. 618–621.

31. Shannon CE. A mathematical theory of communication. Bell Sys. Tech. J. 1948;27:379– 423.

32. Gosalia K, Weiland J, Humayun M, Lazzi G. Thermal elevation in the human eye & head due to the operation of a retinal prosthesis. IEEE Trans. Biomed. Eng. 2004;51(8):1469–77.

33. Wolf PD, Nicolelis MAL. National Institutes of Health; http://www.ninds.nih.gov/funding/research/npp/niw06_poster_abstracts.pdf.

34. Puers R, Vandevoorde G. Recent progress on transcutaneous energy transfer for total artificial heart systems. Artif. Organs. 2001;25(5):400–405.

35. Pennes HH. Analysis of tissue and arterial blood temperatures in the resting forearm. J. Appl. Physiol. 1948;1(2):93–122.

36. Lazzi G. Thermal effects of bioimplants. IEEE Eng. Med. Biol. Mag. 2005;24(5):75–81.

37. Kiyatkin EA. Brain hyperthermia during physiological and pathological conditions: causes, mechanisms, and functional implications. Curr. Neurovasc. Res. 2004;1:77–90.

38. IEEE. IEEE Standard C95.1. 1999. Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

39. Matsuki H, Matsuzaki T, Satoh T. Simulations of temperature rise on transcutaneous energy transmission by non-contact energy transmitting coils. IEEE Trans. Magnetics. 1993;29(6):3334–36.

40. Geselowitz DB, Hoang QT, Gaumond RP. The effects of metals on a transcutaneous energy transmission system. IEEE Trans. Biomed. Eng. 1992;39(9):928–34.

41. Tang Q, Tummala N, Gupta SKS, Schwiebert L. Communication scheduling to minimize thermal effects of implanted biosensor networks in homogeneous tissue. IEEE Trans. Biomed. Eng. 2005;52(7):1285–94.

42. Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues. II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996;41 (11):2251–69.

43. Ibrahim TS, Abraham D, Rennaker R. Electromagnetic power absorption and temperature changes due to brain machine interface operation. Ann Biomed Eng. 2007

44. Christ A, Samaras T, Klingenbφck A, Kuster N. Characterization of the electromagnetic near-field absorption in layered biological tissue in the frequency range from 30 MHz to 6000 MHz. Phys. Med. Biol. 2006;51:4951–65.

45. Kuster N, Balzano Q. Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz. IEEE Trans. Veh. Technol. 1992;41(1):17–23.

46. Samaras T, Christ A, Kuster N. Worst case temperature rise in a one-dimensional tissue model exposed to radiofrequency radiation. IEEE Trans. Biomed. Eng. 2007;54(3):492–496.

47. Kim J, Rahmat-Samii Y. Implanted antennas inside a human body: simulations, designs, and characterizations. IEEE Trans. Microwave Theory Techniques. 2004;52(8):1934–43.

48. Lazzi G, DeMarco SC, Wentai L, Weiland JD, Humayun MS. Computed SAR and thermal elevation in a 0.25-mm 2-D model of the human eye and head in response to an implanted retinal stimulator. Part II. Results. IEEE Trans. Antennas Propagation. 2003;51(9):2286–95.

49. Jain MK, Wolf PD. Temperature-controlled and constant-power radio-frequency ablation: what affects lesion growth? IEEE Trans. Biomed. Eng. 1999;46(12):1405– 12.

50. Seese TM, Harasaki H, Saidel GM, Davies CR. Characterization of tissue morphology, angiogenesis, and temperature in the adaptive response of muscle tissue to chronic heating. Lab. Invest. 1998;78(12):1553–62.

51. Davies CR, Fukumura F, Fukamachi K, Muramoto K, Himley SC, Massiello A, Chen JF, Harasaki H. Adaptation of tissue to a chronic heat load. ASAIO J. 1994;40(3):M514–17.

52. Okazaki Y, Davies CR, Matsuyoshi T, Fukamachi K, Wika KE, Harasaki H. Heat from an implanted power source is mainly dissipated by blood perfusion. ASAIO J. 1997;43(5):M585–88.

53. Kiyatkin EA, Brown PL, Wise RA. Brain temperature fluctuation: a reflection of functional neural activation. Eur. J. Neurosci. 2002;16(1):164–68.

54. Goldstein LS, Dewhirst MW, Repacholi M, Kheifets L. Summary, conclusions and recommendations: adverse temperature levels in the human body. Int. J. Hyperthermia. 2003;19(3):373–84.

55. Haveman J, Sminia P, Wondergem J, van der Zee J, Hulshof M. Effects of hyperthermia on the central nervous system: what was learnt from animal studies? Int. J. Hyperthermia. 2005;21(5):473–87.

56. Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int. J. Hyperthermia. 1994;10(4):457–83.

57. Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry & thermal thresholds for tissue damage from hyperthermia. Int. J. Hyperthermia. 2003;19(3):267–94.

58. Xie T, McCann UD, Kim S, Yuan J, Ricaurte GA. Effect of temperature on dopamine transporter function & intracellular accumulation of methamphetamine: implications for methamphetamine-induced dopaminergic neurotoxicity. J. Neurosci. 2000;20(20):7838.

59. Gao BO, Franken P, Tobler I, Borbely AA. Effect of elevated ambient temperature on sleep EEG spectra and brain temperature in the rat. Am J Physiol Regul Integr Comp Physiol. 1995;268(6):1365–73.

60. Carlisle HJ, Ingram DL. The effects of heating and cooling the spinal cord and hypothalamus on thermoregulatory behaviour in the pig. J. Physiol. 1973;231(2):353–64. [PMC free article]

61. Magoun HW, Harrison F, Brobeck JR, Ranson SW. Activation of heat loss mechanisms by local heating of the brain. J. Neurophysiol. 1938;1(2):101–14.

62. Lindquist S, Craig EA. The heat-shock proteins. Annu. Rev. Genet. 1988;22(1):631– 77.

63. Arora H, Klemmer N, Morizio JC, Wolf PD. Enhanced phase noise modeling of fractional-N frequency synthesizers. IEEE Trans. Circuits Syst. 2005;52(2):379–95.

Shu, Y., Habchi, J., Costanzo, S., Padilla, A., Brunel, J., Gerlier, D., *Oglesbee, M., *Longhi, S. (2012). Plasticity in structural and functional interactions between the phosphoprotein and nucleoprotein of measles virus. Journal of Biological Chemistry (in press). * co-senior authors

Moore, S., Kim, M.Y., Maiolini, A., Tipold, A., Oglesbee, M. (2012). Extracellular hsp70 release in canine steroid responsive meningitis-arteritis. Veterinary Immunology & Immunopathology 145(1-2):129-33.

Kim, D., Huey, D., Oglesbee, M., Niewiesk, S. (2011). Insights into the regulatory mechanism controlling the inhibition of vaccine-induced seroconversion by maternal antibodies. Blood 117(23):6143-51.

Oglesbee, M., Niewiesk, S. (2011). Measles virus neurovirulence & host immunity. Future Virology 6(1):85-99

Longhi, S., Oglesbee, M. (2010). Structural disorder within the measles virus nucleoprotein and phosphoprotein. Protein and Peptide Letters 17(8):961-78.

Couturier, M., Buccellato, M., Costanzo, S., Bourhis, J.M., Shu, Y., Nicaise, M., Desmadrill, M., Flaudrops, C., Longhi, S., Oglesbee, M. (2010). High affinity binding between hsp70 and the C-terminal domain of the measles virus nucleoprotein requires an hsp40 co-chaperone. Journal of Molecular Recognition 23(3):301-15.

Carsillo, T., Carsillo, M., Traylor, Z., Rajala-Schultz, P., Popovich, P., Niewiesk, S., Oglesbee, M. (2009). Major histocompatibility complex haplotype determines hsp70-dependent protection against measles virus neurovirulence. Journal of Virology 83(11):5544-5555.

Awad, H., Suntres, Z., Heijmans, J., Smeak, D., Bergdall-Costell, V., Cristofi, F.L., Magro, C., Oglesbee, M. (2008). Intracellular and extracellular expression of the major inducible 70 kDa heat shock protein in experimental ischemia-reperfusion injury of the spinal cord. Experimental Neurology 212:275-284.

Carsillo, T., Traylor, Z., Choi, C., Niewiesk, S., Oglesbee, M. (2006). Hsp72, a host determinant of measles virus neurovirulence. Journal of Virology 80(22):11031-11039.

Carsillo, T., Zhang, X., Vasconcelos, D., Niewiesk, S., Oglesbee, M. (2006). A single codon in the nucleocapsid protein C-terminus contributes to in vitro & in vivo fitness of Edmonston measles virus. Journal of Virology 80(6): 2904-2912.

Oglesbee, M.J., Herdman, A.V., Passmore, G.G., Hoffman, W.H. (2005). Diabetic ketoacidosis increases extracellular levels of the major inducible 70 kDa heat shock protein. Clinical Biochemistry 38(10):900-4.

Zhang, X., Bhouris, J.-M., Longhi, S., Carsillo, T., Buccellato, M., Morin, B., Canard, B., Oglesbee, M. (2005). Hsp72 recognizes a P binding motif in the measles virus N protein C-terminus. Virology 337:162-174.

Carsillo, T., Carsillo, M., Niewiesk, S., Vasconcelos, D., Oglesbee, M. (2004). Hyperthermic pre-conditioning promotes measles virus clearance from brain in a mouse model of persistent infection. Brain Research 1004:73-82.

Zhang, X., Oglesbee, M. (2003). Use of surface plasmon resonance for the measurement of low affinity binding interactions between hsp72 and the measles virus nucleocapsid protein. Biological Procedures Online 5(1):170-181.

Zhang, X., Glendening, C., Linke, H., Parks, C.L., Brooks, C., Udem, S.A., Oglesbee, M. (2002). Identification and characterization of a regulatory domain on the carboxyl terminus of the measles virus nucleocapsid protein. Journal of Virology 76(17):8737-8746.

Oglesbee, M.J., Alldinger, S., Vasconcelos, D., Diehl, K., Shinko, P., Baumgδrtner, W., Tallman, R., Podell, M. (2002). Intrinsic thermal resistance of the canine brain. Neuroscience 113(1):55-64.

Diehl, K.A., Crawford, E., Shinko, P.D., Tallman, R.D., Oglesbee, M.J. (2000). Alterations in hemostasis associated with hyperthermia in a canine model. American Journal of Hematology 64(4):262-270.

Oglesbee, M.J., Diehl, K., Crawford, E., Kearns, R., and Krakowka, S. (1999). Whole body hyperthermia: effects upon canine immune and hemostatic functions. Veterinary Immunology and Immunopathology 69:185-199.

Kearns, R.J., Ringler, S., Krakowka, S., Tallman, R. Sites, J., Oglesbee, M.J. (1999). The effects of extracorporeal whole body hyperthermia on the functional and phenotypic features of canine peripheral blood mononuclear cells. Clinical and Experimental Immunology 116:188-192.

Vasconcelos, D., Cai, X.H., Oglesbee, M.J. (1998). Constitutive over-expression of the major inducible 70 kDa heat shock protein mediates large plaque formation by measles virus. Journal of General Virology 79:2239-2247.

Heller, M., Vasconcelos, D., Cummins, J., Oglesbee, M. (1998). Interferon-? inhibits the emergence of cellular stress response-dependent morbillivirus large plaque variants. Antiviral Research 38:195-207.

Vasconcelos, D., Norrby, E., Oglesbee, M. (1998). The cellular stress response increases measles virus-induced cytopathic effect. Journal of General Virology 79:1769-1773.

Liu, Z., Huntley, C.C., De, B.P., Das, T., Banerjee, A.K., Oglesbee, M. (1997). Phosphorylation of canine distemper virus P protein by protein kinase C-? and casein kinase II. Virology 232(1): 198-206.

Andrews, J., Newbound, G., Oglesbee, M., Brady, J., Lairmore, M. (1997). The cellular stress response enhances HTLV-1 basal gene expression through the basal core promoter of the long terminal repeat. Journal of Virology 71(1): 741-745.

Oglesbee, M.J., Liu, Z., Kenney, H., Brooks, C. (1996). The highly inducible member of heat shock proteins increases canine distemper virus polymerase activity. Journal of General Virology 77:2125-2135.

Andrews, J., Oglesbee, M., Trevino, A., Guyot, D., Newbound, G., Lairmore, M. (1995). Enhanced human T cell lymphotrophic virus type I expression following induction of the cellular stress response. Virology 208:816-820.

Oglesbee, M., and Krakowka, S. (1993). The cellular stress response induces selective intranuclear trafficking and accumulation of morbillivirus major core protein. Laboratory Investigation 68(1):109-117.

Oglesbee, M., Kenney, H., Kenney, T., and Krakowka, S. (1993). Enhanced production of morbillivirus gene-specific RNAs following induction of the cellular stress response in stable persistent infection. Virology 192:556-567.

Oglesbee, M. (1992). Intranuclear inclusions in paramyxovirus-induced encephalitis: evidence for altered nuclear body differentiation. Acta Neuropathologica 84:407-415.

Oglesbee, M., Ringler, S., & Krakowka, S. (1990). Interaction of canine distemper virus nucleocapsid variants with 70k heat shock proteins. Journal of General Virology 71:1585-1590.

Oglesbee, M., Tatalick, L., Rice, J., & Krakowka, S. (1989). Isolation and characterization of canine distemper virus nucleocapsid variants. Journal of General Virology 70:2409-2419.